SL_k -Tilings and Paths in \mathbb{Z}^k

Zachery Peterson and Khrystyna Serhiyenko

September 10, 2023

Zachery Peterson and Khrystyna Serhiyenko

1 Friezes and Tilings

2 The Bijection

3 Applications

Zachery Peterson and Khrystyna Serhiyenko

History of Friezes

- Friezes were first studied in the 1970's by Conway and Coxeter in the k = 2 case.
- They are in bijection with triangulations of polygons.
- Work was expanded for higher k by Morier-Genoud, Bergeron and Reutenauer in the 2000's.
- In 2020, Bauer, Faber, Gratz, Serhiyenko, and Todorov related friezes to Plücker coordinates.

What is a Frieze?

Definition

An SL_k -frieze is an array of offset bi-infinite rows of integers consisting of k - 1 rows of zeros at the top and bottom, a row of ones below and above them, respectively, rows of integers satisfying the following properties.

- Every $k \times k$ diamond of neighboring entries has determinant 1.
- Every $(k+1) \times (k+1)$ diamond has determinant 0.

Friezes	and	Tilings
00000	000	000

3

Example (k = 2)

- If all entries outside the rows of zeros are positive, we call the frieze *positive*.
- If the frieze does not terminate, then we call it an *infinite frieze*.

Zachery Peterson and Khrystyna Serhiyenko SL_k -Tilings and Paths in \mathbb{Z}^k

Plücker Coordinates

- A Plücker coordinate is a map from the Grassmannian to \mathbb{R} .
- If an element of the Grassmannian is thought of as a k × n matrix A, then p₁ is the determinant of the submatrix of A whose columns are indexed by I.
- The coordinate ring of the Grassmannian is a cluster algebra and the Plücker coordinates are cluster variables.

Plücker Friezes

- A Plücker coordinate is *consecutive* if its indices are.
- It is almost consecutive if it has only one index not in a consecutive set.

Definition

The *Plücker frieze* of type (k, n) denoted by $\mathcal{F}_{(k,n)}$ is an infinite offset array of height n + k - 1 whose entries are Plücker coordinates.

Friezes and Tilings				The 000	Bijection				Applications 0000000
Example	$(\mathcal{F}_{(3}$,5))							
		0		0		0		0	
	0		0		0		0		
		<i>p</i> ₁₂₃		<i>p</i> ₂₃₄		<i>p</i> ₃₄₅		<i>p</i> ₁₄₅	
•••	p_{135}		p_{124}		p_{235}		p_{134}		•••
		p_{145}		p_{125}	_	p_{123}	_	p_{234}	
	0		0		0		0		
		0		0		0		0	

Theorem (BFGST)

- A Plücker frieze satisfies the properties of a frieze.
- All integer friezes arise by applying the entries of a Plücker frieze to a particular element of the Grassmannian.

Zachery Peterson and Khrystyna Serhiyenko SL_k -Tilings and Paths in \mathbb{Z}^k

Tilings

Definition

A tiling $\mathcal{M} = (m_{ij})_{i,j \in \mathbb{Z}}$ with values $m_{ij} \in \mathbb{Z}$ is an infinite array. We say that \mathcal{M} is an SL_k -tiling if every adjacent $k \times k$ matrix is in $SL_k(\mathbb{Z})$. We say that an SL_k -tiling \mathcal{M} is tame if every adjacent $(k+1) \times (k+1)$ sub-matrix of \mathcal{M} has determinant 0. We denote by \mathbb{SL}_k the set of all tame SL_k -tilings

Example (*SL*₃-tiling)

Zachery Peterson and Khrystyna Serhiyenko SL_k -Tilings and Paths in \mathbb{Z}^k ◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Friezes and Tilings	The Bijection	Applications
00000000€0	0000	0000000

Tilings from Friezes

- Bergeron and Reutanauer devised a method for transforming a frieze F into a tiling \mathcal{M}_F .
- Rotate the frieze 45° clockwise and extend periodically.

イロト イヨト イヨト イヨト

E 990

Friezes and Tilings	The Bijection	Applications
00000000●	0000	0000000

Paths

Definition

Let $\gamma = {\gamma_i}_{i \in \mathbb{Z}}$ be a bi-infinite strip of k-column vectors $\gamma_i \in \mathbb{Z}^k$ with the property that the matrix $(\gamma_i, \ldots, \gamma_{i+k-1})$ whose columns are k consecutive entries of γ is an element of $SL_k(\mathbb{Z})$. We denote the set of all such strips \mathcal{P}_k and we call γ a *path*.

For example,

$$\gamma = \left(\cdots, \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 1\\3\\6 \end{pmatrix}, \begin{pmatrix} 1\\2\\4 \end{pmatrix}, \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \cdots \right)$$

• We will frequently refer to $(\mathcal{P}_k \times \mathcal{P}_k)/SL_k(\mathbb{Z})$.

■ We mod out by the operation of multiplying each vector in the paths by the same matrix in SL_k(ℤ).

Zachery Peterson and Khrystyna Serhiyenko

Friezes and Tilings	The Bijection	Applications
000000000	●000	0000000

Motivation

- In 2020, Short gave a bijection between (P₂ × P₂)/SL_k(ℤ) and SL₂.
- This was done by relating tilings to paths in the Farey Graph.
- He gave several restrictions of this bijection in order to describe all periodic and positive tilings.
- Our goal was to study SL_k through a similar process.
- The case of k = 2 is well-studied in both tilings and friezes, but higher k are not well-understood.

Friezes and Tilings	The Bijection	Applications
000000000	o●oo	0000000

Defining Φ

Definition

Fix a pair
$$(\gamma, \delta) \in (\mathcal{P}_k \times \mathcal{P}_k)/SL_k(\mathbb{Z}).$$

$$\Phi: (\mathcal{P}_k \times \mathcal{P}_k) / SL_k(\mathbb{Z}) \to \mathbb{SL}_k$$
$$(\gamma, \delta) \mapsto (m_{ij})_{i,j \in \mathbb{Z}}$$

where

$$m_{ij} = \det (\gamma_i, \gamma_{i+1}, \ldots, \gamma_{i+k-2}, \delta_j).$$

メロト メヨト メヨト メヨト

= 900

Zachery Peterson and Khrystyna Serhiyenko

・ロト ・四ト ・ヨト ・ヨト

2

Example ($\Phi(\gamma, \delta)$)

Zachery Peterson and Khrystyna Serhiyenko

Theorem (P., Serhiyenko)

The map Φ is a bijection between tame SL_k -tilings and pairs of paths modulo the action by $SL_k(\mathbb{Z})$.

This generalizes the main result of Short for higher dimensions k.

Zachery Peterson and Khrystyna Serhiyenko

Friezes and Tilings 000000000	The Bijection 0000	Applications •000000

Periodicity

- We say a path γ is *p*-periodic if it has the property that $\gamma_i = \gamma_{i+p}$ for all $i \in \mathbb{Z}$.
- We say that a tiling \mathcal{M} is $(p \times q)$ -periodic if

$$m_{ij} = (-1)^{k-1} m_{i+pj} = (-1)^{k-1} m_{ij+q} = m_{i+pj+q}$$

for all $i, j \in \mathbb{Z}$.

This notion was first introduced by Bergeron and Reutenauer.

Corollary

The paths γ and δ are m and n periodic, respectively, if and only if $\mathcal{M} := \Phi(\gamma, \delta)$ is $(m \times n)$ -periodic

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● ○○○

Dual Tiling

- Bergeron and Reutenauer define the notion of a *dual tiling*.
- The *dual tiling* of \mathcal{M} , written \mathcal{M}^* has, as an entry at each position, the (k-1) adjacent minor of the tiling at that entry.
- The dual tiling \mathcal{M}^* is itself a tiling, and $(\mathcal{M}^*)^* = \mathcal{M}$ up to a shift.

Theorem (P., Serhiyenko)

Let $\mathcal{M} = \Phi(\gamma, \delta)$ be an SL_k -tiling. Then its dual $\mathcal{M}^* = \Phi(\delta, \gamma)$.

Friezes and Tilings	The Bijection	Applications
0000000000	0000	00●0000
Tilings from Friezes		

- Recall that we can make a tiling \mathcal{M}_F from a frieze by rotating it and repeating it up to shift.
 - Define a map ι as follows.

$$\iota: \mathcal{P}_k/SL_k(\mathbb{Z}) \to (\mathcal{P}_k \times \mathcal{P}_k)/SL_k(\mathbb{Z})$$
$$(\gamma) \mapsto (\gamma, \gamma).$$

Theorem (P., Serhiyenko)

The restriction of the map Φ given by $\Phi \circ \iota$ is a bijection between tame SL_k -tilings from SL_k -friezes and paths.

Positivity

- Short's results concerning positive friezes and tilings rely heavily on the geometry of the Farey graph.
- We have no connection to from higher Farey graphs to higher dimensional friezes.
- We focus on the study of positive friezes for higher *k*.

Partial Positivity Results

Lemma

For $k \leq 3$, if the tiling \mathcal{M}_F is positive, then the quiddity sequence is alternating.

- These cases follow from direct applications of our bijection and linear algebra.
- The converse is generally not true.
- We know some cases for higher *k* values.

Theorem (P.,Serhiyenko)

The tiling \mathcal{M}_F is positive if and only if the quiddity sequence alternates in the following cases.

•
$$k = 2$$
 and $n \le 9$

• Except
$$k = 4$$
 and $n = 8$

- k = 5 and n = 8 has a weird exception
- Cases where n = k + 2 are trivial.
- Other cases use results results by Morier-Genoud, Ovsienko, and Tobachnikov.
- The proofs use structures of cluster algebras and the Plücker relations.

<ロ> <四> <ヨ> <ヨ>

2

Thank You!

Zachery Peterson and Khrystyna Serhiyenko SL_k -Tilings and Paths in \mathbb{Z}^k