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Monoids with Real Degree

F1[X1, . . . , Xn] := {0} ∪ {Xu1

1 · · ·X
un
n such that ui ∈ R>0},

F1(X1, . . . , Xn) := {0} ∪ {Xu1

1 · · ·X
un
n such that ui ∈ R}.

(1)

The �rst line de�nes the polynomial rings and the second line is the �eld of fractions.

R can be replaced by Z or Q.
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Category

Let us now construct a category on the monomials A := F1(X1, . . . , Xn).

Objects as Sets Fix ε ∈ R, then de�ne the sets by valuations,

A(ε, Xi) := {m ∈ A such that valXi
(m) > ε for some given ε ∈ R}.

Every set contains 0 since val(0) =∞.

Example 1. A(2, X1) = {X21, X
2
1X

−1
2 , X

3
1X3, . . .}.

2. A(−2, X1) = {X2, X
−2
1 , X

−1
1 X

2
2, X

3
1X3, . . .}.

Ideals The sets A(ε, Xi) are modeled after ideals for ε > 0. For example, in the

integer degree case the ideal generated by 〈X〉 is A(1, X). These sets are multi-

plicatively closed. We can also de�ne prime sets which become analogues of prime

ideals.
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Morphisms as inclusion maps The family of sets are ordered by inclusion as in

a topological space.

Mor(U,V) =

{
{pt} if U ⊆ V
∅ otherwise,

(2)

where {pt} is a set with single element.

Examples Let δ > 0 then A(ε, Xi) ⊂ A(ε−δ, Xi) for any given ε ∈ R. For example,

· · · ⊂ A(2, X0) ⊂ A(1, X0) ⊂ A(0, X0) ⊂ A(−1, X0) ⊂ · · · .
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Morphisms as Partial Derivatives The idea of set inclusion as a morphism can

be carried onto the setting of partial derivatives by constructing set inclusions of

the form

A(ε, Xi) ⊂ A(ε− 1, Xi).

Let a ∈ A be a monomial and ∂ia denote the partial derivative of a with respect

to Xi, that is ∂a/∂Xi. There are two possibilities for a either valXi
(a) 6= 0 or

valXi
(a) = 0.

∂ia =

{
a/Xi if valXi

(a) 6= 0,
a otherwise.

(3)

Thus there are inclusion morphisms of the form

A(ε, Xi)
∂i−→ A(ε− 1, Xi). (4)

Example ∂X(X
2Y) = XY and ∂Z(X

2Y) = X2Y.
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Antiderivatives

The antiderivatives are straightforward as well. If a is a monomial then∫
Xi

a = a · Xi.

The above operation is not de�ned for a = 1/Xi.
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Base Category

Let B denote the category with objects as sets A(ε, Xi). The morphisms are identity

maps for each object and partial derivatives. This category will be referred to as

the base category.
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Fibered Category In order to keep track of coe�cients, which come from

the exponents of monomials after di�erentiation, a �bered category needs to be

constructed over a the base category B. This new category will be denoted by C.

Objects of the Category The category C is constructed so that its objects behave

as vector bundles over the base category B. An object of category C is indexed by

elements of an object of the base category B. The object is of the form∏
a∈A(ε,Xi)

Ka (5)

where Ka = (c, a) is a pair with c ∈ K, a ∈ A(ε, Xi). K is a ring or a �eld which

keeps track of coe�cients after di�erentiation.
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Morphisms as Partial Derivatives The morphisms in this category are con-

structed over the morphisms of the base category, that is, A(ε, Xi)
∂1−→ A(ε−1, Xi).∏

a∈A(ε,Xi)

Ka
∂i−→

∏
a′∈A(ε−1,Xi)

Ka′

∂i(c, a) =

{
(0, a) if vXi

(a) = 0

(c · vXi
(a), a/Xi), otherwise

(6)

Example

1. ∂
∂X

(2, X2Y) = (4, XY) where X2Y ∈ A(2, X) and XY ∈ A(1, X).

2. ∂
∂Z

(2, X2Y) = (0, X2Y) where X2Y ∈ A(2, X) ⊂ A(1, X).

9



Polynomials as sections

A polynomial with coe�cients in K can be expressed as a section of
∏
Ka. For

example, 1+ 2X+ X2 + 3Y is a section of
∏
a∈A(0,X)Za given as a tuple

(1, 1), (2, X), (1, X2), (3, Y), (0, X10), . . .

with in�nitely many zero coe�cients. The partial derivative with respect to X will

give

(0, 1), (2, 1), (2, X), (0, Y), (0, X9), . . .

which translates to the polynomial 2+ 2X.
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Series as sections

The series for sine and cosine can be considered as sections of
∏
a∈A(0,X)Qa. For

sinX the sections are

(1, X), (−1/3!, X3), (1/5!, X5), (−1/7!, X7), . . . , ((−1)n/(2n+ 1)!, X2n+1), . . .

and (0,m) for all other monomials. Taking the derivative gives cosine

(1, 1), (−1/2!, X2), (1/4!, X4), (−1/6!, X6), . . . , ((−1)n/(2n)!, X2n), . . .
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Antiderivatives

The antiderivatives in a �bered category require a bit more care, since integration

introduces denominators which may not have inverses in the given ring or a �eld.

Let (c, a) be the pair where c ∈ K and a is a monomial (not equal to 1/Xi) then∫
Xi

(c, a) =

(
c

valXi
(a) + 1

, a · Xi
)

(7)

Char p A major problem while working over the �eld Fp is the following integral∫
X

Xp−1 =
Xp

p
, (8)

where the right hand side is not de�ned. This problem does not occur over F1
since the coe�cient 1/p is ignored. But, the �eld in the �bered category has to be

chosen carefully.
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Total Derivative

The total derivative merges the partial derivatives given by one forms. The same

constructions work as in the previous section.

One Forms Ω1

The one forms consists of terms like fdXi where f ∈ A(ε, Xi). This can be �t into

a base category and then total derivative can be de�ned as a section of an object

in the �bered category.

Base category

The base category will be denoted by B ′.
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Objects of Base category

The objects are sets of the form ∩iA(εi, Xi) and ∩iA(εi, Xi)dXi. In other words

each Xi has valuation at least εi.

Morphisms of Base category

Every object has an identity map. The only morphisms that exist between distinct

objects come from applying ∂i to the monomial for each i.

∪j∂j : ∩A(εi, Xi)→ ∩A(εi − 1, Xi)dXi
f 7→ ∪j(∂jf)dXj

(9)
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Fibered category

The �bered category will be denoted by C ′.

Objects of fibered category

The objects are direct products indexed by the base set∏
a∈∩A(ε,Xi)

Ka and
∏

a∈∩A(ε,Xi)dXi

Ka.

Morphisms of fibered category Every object has an identity map. The only

morphisms that exist between distinct objects come from ∪i∂i.
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Example

(∪∂)(c, X2YZ) 7→ (2c, XYZdX), (c, X2ZdY), (c, X2YdZ)

(∪∂)(X2YZ) 7→ (XYZdX) ∪ (X2ZdY) ∪ (X2YdZ)
(10)

The total derivative in the �bered category is the analogue of

2c · XYZdX+ c · X2ZdY + c · X2YdZ.

Arithmetic Derivative

The above example recreates the notion of arithmetic derivative as given in wikipedia.

Setting c = 1, X = 2, Y = 3, Z = 5 and dropping dX, dY, dZ gives total derivative in

�bered category as

(2, 30), (1, 20), (1, 12).

Summing the above as 2 · 30+ 1 · 20+ 1 · 12 = 92 which is arithmetic derivative of

60.
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Leibniz Rule

The �bered category allows us to con�rm Leibniz rule for partial derivatives. Let

a, b be monomials such that vXi
(a) and vXi

(b) > 0 then

∂i(ab) = a∂ib = b∂ia =
ab

Xi
. (11)

The coe�cients can be allowed in the �bered category.

(c, ab)
∂i−→ (c · vXi

(b), a∂ib)⊕ (c · vXi
(a), b∂ia)

= (c · vXi
(b) + c · vXi

(a))a∂ib

= (c · vXi
(b) + c · vXi

(a))b∂ia.

(12)
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Example

The partial derivative ∂ of cX5 according to Leibniz rule and in �bered category is

given below.
∂(cX3 · X2) = cX3∂X2 + cX2∂X3

= (2c+ 3c)X4 = 5cX4,

cX3 · X2 ∂−→ (c, X3∂X2)⊕ (c, X2∂X3)

= (2c, X4)⊕ (3c, X4) = (5c, X4).

(13)

In the base category the Leibniz rule is the equality

∂(X3 · X2) = X3∂X2 = X2∂X3 = X4 = X5

X
.
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Example

What if the valuation is zero? Below ∂ := ∂X.

∂(cX3 · Y) = cX3∂Y + cY∂X3

= 0+ 3cX2Y = 3cX2Y,

cX3 · Y ∂−→ (c, X3∂Y)⊕ (c, Y∂X3)

= (0, X3Y)⊕ (3c, X2Y).

(14)

Since there is no addition in the Base category there is no interpretation of

Leibniz rule.
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de Rham Cohomology

In this section we will use integer degrees in F1[X1, . . . , Xn].

The cohomology occurs in the �bered category, which keeps track of the coe�-

cients and the negative signs coming from the alternating algebra, that is dXidXj =

−dXjdXi. The base category keeps track of the negative sign by making the string

dXidXj non commutative.

Zero Forms

The zero forms is a set of all monomials.

Ω0 := F1[X1, . . . , Xn]. (15)
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One forms

These are de�ned as

Ω1 := {fdXi such that f ∈ F1[X1, . . . , Xn]}. (16)

2 Forms

The two forms have non commutative di�erentials, that is dXidXj 6= dXjdXi.

Ω1 :={fdXidXj such that f ∈ F1[X1, . . . , Xn]
i 6= j and dXidXj non commutative}.

(17)
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k forms

The string of di�erentials is non commutative. Let k elements be chosen from

{1, 2, . . . , n} and denoted as {i1, . . . , ik}, arranged in increasing order. If σ, τ are two

distinct permutations of the k element set, then

dXσ(i1) . . . dXσ(ik) 6= dXτ(i1) . . . dXτ(ik).

The k forms are de�ned as

Ωk :={fdXσ(i1) . . . dXσ(i4k) such that f ∈ F1[X1, . . . , Xn]
σ(ij) distinct and dXσ(i1) . . . dXσ(ik) non commutative}.

(18)
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Base Category

The base category consists of n + 1 objects, each object a set Ωi, 0 6 i 6 n. The

morphisms are given as ∪i∂i

∪i∂i : Ωk−1 → Ωk

∪i∂i : fdXσ(i1) . . . dXσ(ik−1) 7→ ∪i(∂if)dXσ(i1) . . . dXσ(ik−1)dXi,
(19)

such that dXσ(i1) . . . dXσ(ik−1)dXi = 0 if there is a repetition of dXi.
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Example

Let Ω0 = F1[X1, X2, X3, X4] and X
2
1X
3
2dX1dX3 ∈ Ω2, then the morphism Ω2 → Ω3

is given as

(∪4i=1∂i)X21X32dX1dX3 = ∂1X21X32dX1dX3 ∪ ∂2X21X32dX1dX3
∪ ∂3X21X32dX1dX3 ∪ ∂4X21X32dX1dX3
= 0 ∪ X21X22dX1dX3dX2 ∪ 0 ∪ X21X32dX1dX3dX4 ∈ Ω3.

(20)
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Fibered Category

De�ne sgn(σ) = (−1)N(σ) where N(σ) is the number of inversions required to

arrange the k elements to increasing order. There are n objects of the form∏
a∈Ωi

Ka such 0 6 i 6 n

and Ka is a tuple of the form (sgn(σ) · c, a) with c ∈ K, a ∈ Ωi. The only di�erence

is that the string dXσ(i1) . . . dXσ(ik) is now commutative with sign of permutation

absorbed in the coe�cient. The morphisms are given as a union of partials

∪i ∂i :
∏

a∈Ωk−1

Ka →
∏
a∈Ωk

Ka. (21)
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Example

1. Let Ω0 = F1[X1, X2, X3, X4] and (c, X21X
3
2dX1dX3) ∈ Ω2, then the morphism

Ω2 → Ω3 is given as

(∪4i=1∂i)(c, X21X32dX1dX3)
= ∂1(c, X

2
1X
3
2dX1dX3), ∂2(c, X

2
1X
3
2dX1dX3), ∂3(c, X

2
1X
3
2dX1dX3), ∂4(c, X

2
1X
3
2dX1dX3)

= 0, (3c, X21X
2
2dX1dX3dX2), 0, (0, X

2
1X
3
2dX1dX3dX4) ∈ Ω3

= 0, (−3c, X21X
2
2dX1dX2dX3), 0, (0, X

2
1X
3
2dX1dX3dX4) ∈ Ω3

(22)

2. d2 = 0

(c, X2Y)→ (2c, XYdX), (c, X2dY)→ (2c, XdXdY), (2c, XdYdX).

But (c, fdYdX) = (−c, fdXdY), thus summing up over fdXdY gives 2c− 2c = 0.
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Complex

Proposition

The �bered category leads to a complex∏
0→

∏
a∈Ω1

Ka →
∏
a∈Ω2

Ka → . . . . (23)

with map d = ∪i∂i and d2 = 0.

27



If −1 ∈ F1[X1, . . . , Xn] such that −1 + 1 ≡ 0, the de Rham cohomology can be

replicated in the base category itself by setting

dXσ(i1) · · ·dXσ(ik) = sgn(σ)dXi1 · · ·dXik .

Proposition

The following is a complex

0→ Ω1 → Ω2 → . . . (24)

with map d = ∪i∂i and d2 = 0.

Proposition

Let dk be the di�erential Ωk → Ωk+1 for k > 1. Then
1. Kerd1 = F1[X1, . . . , Xn].

2. Kerdk+1 = Imdk.
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Let D denote the base category.

Objects

Let S be a subset of {1, 2, . . . , n}. The objects of D are sets denoted by US and

de�ned as

US = ∩sB(0, Xs) ∪ {1} where i ∈ S. (25)

If S is a singleton then Ui := B(0, Xi) ∪ {1}. For more than one element in S

there are intersections Ui,j = Ui ∩ Uj = B(0, Xi) ∩ B(0, Xj) ∪ {1}. If S is empty

then set U∅ := F1[X1, . . . , Xn], on the other hand if S is the entire set then US =

∪u>0{Xu1

1 · · ·Xun
n }∪{1} where u is the vector (u1, . . . , un) and each ui > 0. In other

words every monomial in US contains all the variables.
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Morphisms

The morphisms are inclusions Maps. If Si ⊆ S and S1 ⊆ S2, then US1
←↩ US2

. For

example

Ui ←↩ Ui,j ←↩ Ui,j,k.

Fibre Products and Limits

Since, the morphisms are simple inclusion maps

Fibre Product Intersection

Direct Limit U∅
Inverse Limit US
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Opposite category

Let E denote the category which serves as an opposite category to D. In fact E is

constructed so that it is isomorphic to Do but with di�erent objects.

Objects

Let S be a subset of {1, 2, . . . , n}. The objects of E are sets denoted by VS and

de�ned as

VS :={m ∈ F1(X1, . . . , Xn) such that valXs
(m) ∈ R for s ∈ S

and valXj
(m) > 0 for j ∈ {1, 2, . . . , n}\S}.

(26)

For example if S is a singleton then

Vi := {m ∈ F1(X1, . . . , Xn) such that valXi
(m) ∈ R and valXj

(m) > 0 for i 6= j}.
(27)
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Examples

1. The elements of the set VX in F1(X, Y, Z) are {1, X, Y, Y/X, Y
2/X3, Y2Z2/X, . . .}.

This is an analogue of localization of F1[X, Y, Z] at the multiplicatively closed

set {1, X, X2, . . .}, that is, F1[X, Y, Z][1/X].

2. The elements of the set VX ∩ VY in F1(X, Y, Z) is F1[X, Y, Z].

3. The elements of the set VXY are {1, X, Y, Y/X, Y2/X3, 1/Y2, Z/XY . . .}. This is

an analogue of localization of F1[X, Y, Z][1/X] at the multiplicatively closed

set {1, Y, Y2, . . .}, that is, F1[X, Y, Z][1/X, 1/Y]. Since {X} ⊂ {X, Y} therefore

VX ⊂ VXY .

4. If S is the empty set then the de�nition immediately gives V∅ = F1[X1, . . . , Xn],

on the other hand if S is the entire set, then the de�nition gives VS =

F1(X1, . . . , Xn).
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Morphisms

The morphisms are inclusion maps. If Si ⊆ S and S1 ⊆ S2, then VS1
↪→ VS2

. For

example

Vi ↪→ Vi,j ↪→ Vi,j,k.

Fibre Products and Limits

Since, the morphisms are simple inclusion maps

Fibre Product Intersection

Direct Limit VS
Inverse Limit V∅
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Proposition

Let S be a non empty subset of {1, 2, . . . , n} and Si ⊆ Sj ⊆ S. Let F be a functor

F : D → E which sends an object US in category D to an object VS in category

E. It sends the morphism USi
→ USj

in category D to morphism VSi
← VSj

in

category E. Then F is a sheaf.
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U0 U0 ∩U1

⊕ ⊕

F1[X0, X1, X2] U1 U0 ∩U2 U0 ∩U1 ∩U2

⊕ ⊕

U2 U1 ∩U2

Figure 1: Cover of F1[X0, X1, X2] in category D.
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V0 V0,1

⊕ ⊕

F1[X0, X1, X2] V1 V0,2 V0,1,2

⊕ ⊕

V2 V1,2

Figure 2: Contravariant Category
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