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Tits’ idea (1956): analogy between the representation theory of
the symmetric group Sn and the Chevalley group GLn(Fq) should
find an explanation by interpreting Sn as a Chevalley group (finite
group of Lie type) over the “field of characteristic one.”

Chevalley groups over F1 and related F1-geometries were
developed in several papers, notably:

▶ Alain Connes and Caterina Consani. On the notion of
geometry over F1. J. Algebraic Geom. 20 (2011), no. 3,
525–557.

▶ Oliver Lorscheid. A blueprinted view on F1-geometry.
Absolute arithmetic and F1-geometry, 161–219. European
Mathematical Society (EMS), Zürich, 2016.

▶ Koen Thas. The Weyl functor − introduction to absolute
arithmetic. Absolute arithmetic and F1-geometry, 3–36.
European Mathematical Society (EMS), Zürich, 2016.
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Plan of the talk

▶ uniform combinatorial model for representations of complex
semisimple Lie algebras (used to define the corresponding
Chevalley groups), and beyond: the alcove model;

▶ applications to Chevalley groups (Hall-Littlewood
polynomials);

▶ related geometry of flag manifolds (applications to
multiplication formulas in their K -theory).
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Complex simple and affine Lie algebras

Main example. Type An−1 (n ≥ 1):

sln = { n by n complex matrices of trace 0 } , [A,B] = AB − BA .

The other simple Lie algebras g

▶ type Bn (n ≥ 2): so2n+1;

▶ type Cn (n ≥ 3): sp2n;

▶ type Dn (n ≥ 4): so2n;

▶ exceptional types: E6, E7, E8, F4, G2.

Their (untwisted) affine versions ĝ, of type A
(1)
n−1, . . . ,G

(1)
2 .

Chevalley generators: ei , fi
(i = 1, . . . , r for g of type Xr , and i = 0, . . . , r for ĝ of type X

(1)
r ).
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Representations of Lie algebras

Definition. A complex vector space V is a representation of g ⇐⇒
each X ∈ g is represented as a linear map X : V → V , compatibly
with the Lie bracket.

Irreducible representation: V ̸= V1 ⊕ V2.

Fact. The irreducible representations of the (semi)simple and
affine Lie algebras are indexed by certain vectors λ
(highest/dominant weights), and they are denoted V (λ).

Example. In type An−1, the highest weights are partitions
λ = (λ1 ≥ λ2 ≥ . . . ≥ λn−1 ≥ 0).
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Kashiwara’s crystals

Colored directed graphs encoding certain representations V of the
quantum group Uq(g) as q → 0, for the purpose of various
computations (g complex semisimple or affine Lie algebra).

Kashiwara (crystal) operators are modified versions of the
Chevalley generators: ẽi , f̃i .

Fact. V has a crystal basis B =⇒ in the limit q → 0 we have

f̃i , ẽi : B → B ⊔ {0} ,

f̃i b = b′ ⇐⇒ ẽi b
′ = b ⇐⇒ b

i→ b′ .

Crystal graph: directed graph on B with arrows colored i .

Fact. The irreducible representations V (λ) have associated crystals
B(λ).
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Type An−1

Fact. The vertices of B(λ) can be labeled by semistandard Young
tableaux (SSYT) of shape λ, filled with {1, . . . , n}:

n = 5 , λ = (4, 2, 2, 1) , b =

1 1 2 4
2 3
3 4
5

.

Crystal operators: f̃i changes a given i into i + 1.

Types B − D: Kashiwara-Nakashima tableaux (contain negative
entries as well).
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n = 4, λ = (3, 3, 1), blue: 1 → 2, green: 2 → 3, red: 3 → 4.



Kirillov–Reshetikhin (KR) crystals

Correspond to certain finite-dimensional representations of affine
Lie algebras ĝ.

They are the building blocks for the (infinite) highest weight
crystals B(Λ), constructed as infinite tensor products of KR
crystals.

The corresponding crystals have arrows f̃0, f̃1, . . ..

Labeled by p × q rectangles, so they are denoted Bp,q. We only
consider column shapes Bp,1.
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Tensor products of KR crystals

Let p = (p1, . . . , pm) and

B⊗p = Bp1,1 ⊗ . . .⊗ Bpm,1 .

Remark. The tensor product of crystals is constructed via a specific
rule, which corresponds to the tensor product of representations.
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Example in type A
(1)
n−1

View p = (p1, . . . , pm) as a diagram with columns of heights
p1, . . . , pm.

Consider
B⊗p := Bp1,1 ⊗ . . .⊗ Bpm,1 .

Bk,1 ≃ B(1k), so the vertices of B⊗p are represented as
column-strict fillings of the diagram p with integers 1, . . . , n.

Example. n = 5

b =
2 3 1 4
3 3 5
5 4

∈ B3,1 ⊗ B1,1 ⊗ B3,1 ⊗ B2,1 .

Fact. The crystal operators f̃i , i = 0, . . . , n − 1, are defined by the
tensor product rule, based on their action on a column:

1
f̃1−→ 2

f̃2−→ 3 . . . n − 1
f̃n−1−−→ n

f̃0−→ 1 .
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Main goal

Goal. Generalize the tableau models in classical types A− D by
constructing a uniform combinatorial model for crystals of finite
and affine type.

The uniform model: alcove model.

Setup. The corresponding finite root system (of type An−1 − G2)
and the associated alcove picture.

Main idea. Replace tableau combinatorics (insertion, jeu de taquin,
charge, etc.) with combinatorics of finite Weyl groups / reflection
groups (reduced decompositions, Bruhat order, etc.)
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Background on finite root systems

Φ ⊂ V = Rr invariant under reflections sα, α ∈ Φ, in the
hyperplane orthogonal to α.

Coroot: α∨ := 2α/⟨α, α⟩ .

Simple roots: α1, . . . , αr ∈ Φ ; form a basis of V .

Fundamental weights: ωi , where ⟨ωi , α
∨
j ⟩ = δij .

Weights / weight lattice: P := {
∑

i ciωi : ci ∈ Z};
dominant weights P+ if ci ≥ 0.

Example. Type An−1.

V = Rn/⟨ε1 + . . .+ εn⟩ (r = n − 1).

Φ = {αij = εi − εj = (i , j) : 1 ≤ i ̸= j ≤ n} .

Weights / dominant weights / fundamental weights:
compositions / partitions / columns ωk = (1k) = ε1 + . . .+ εk .
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Fundamental weights: ωi , where ⟨ωi , α
∨
j ⟩ = δij .

Weights / weight lattice: P := {
∑

i ciωi : ci ∈ Z};
dominant weights P+ if ci ≥ 0.

Example. Type An−1.

V = Rn/⟨ε1 + . . .+ εn⟩ (r = n − 1).

Φ = {αij = εi − εj = (i , j) : 1 ≤ i ̸= j ≤ n} .
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The Weyl group

W = ⟨sα : α ∈ Φ⟩ = ⟨si : i = 1, . . . , r⟩ .

Length: ℓ(w) = min {k : w = si1 . . . sik} .

Example. Type An−1.

W = Sn , sεi−εj is the transposition tij , si = ti ,i+1 .

The Bruhat order on W has covers

w ⋖ wsα , where ℓ(wsα) = ℓ(w) + 1 .
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Alcove picture

Hyperplanes Hα,k = {λ : ⟨λ, α∨⟩ = k} (k ∈ Z), affine reflections
sα,k .

Alcoves: connected components of V \ (
⋃
Hα,k) .

Fundamental alcove A◦ with a vertex at 0.
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Alcove paths/walks

Definition. Given λ ∈ P+, an alcove path is a shortest sequence of
adjacent alcoves

(A◦ = A0,A1, . . . ,Am = A◦ − λ) .

Ai−1 and Ai separated by a hyperplane Hβi ,li orthogonal to βi .

Let ri := sβi
.

λ-chain (of roots): Γ = (β1, . . . , βm).

Definition. Indexing set A(Γ) for a basis of V (λ), i.e., the vertices
of B(λ), consists of:

J = {j1 < j2 < . . . < js} ⊆ {1, . . . ,m}
such that we have the following saturated chain in Bruhat order:

Id ⋖ rj1 ⋖ rj1rj2 ⋖ . . .⋖ rj1 . . . rjs .

Such subsets will be called admissible subsets. Geometrically, they
give folded alcove paths or alcove walks, denoted Γ(J).

Weight of an admissible subset: µ(J) = −endpoint of Γ(J).
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Example. Type A2, λ = (3, 1, 0) = 3ε1 + ε2,
Γ = ( (1, 2), (1, 3), (2, 3), (1, 3), (1, 2), (1, 3) ).
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J = {3, 6}, saturated chain: Id = 123⋖ t23 = 132⋖ t23t13 = 231 .
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Applications to irreducible characters of semisimple Lie
algebras

Fix a λ-chain Γ.

Theorem.The irreducible character ch(V (λ)) of g can be expressed
as

ch(V (λ)) =
∑

J∈A(Γ)

xµ(J) .

Theorem. [L.-Postnikov] Let Γ(J) be the alcove walk
corresponding to J. We have the Littlewood-Richardson rule:

ch(V (λ)) · ch(V (ν)) =
∑
J

ch(V (ν + µ(J))) ,

where the summation is over all J ∈ A(Γ) s.t.

Γ(J) + ν + µ(J) ⊆ P+
R .
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The crystal structure

Theorem. [L.-Postnikov] The structure of the crystal B(λ) is
realized on the set A(Γ) by combinatorial crystal operators
f̃1, . . . , f̃r :

f̃i (J) :=

{
J ∪ {l}
J \ {k} ∪ {l} .

Remarks. (1) The model is independent of the λ-chain Γ, so we
will use the notation A(λ) = A(Γ). This will be the case with
other variations of the alcove model.

(2) We generalized the mentioned results to symmetrizable
Kac-Moody algebras.



The crystal structure

Theorem. [L.-Postnikov] The structure of the crystal B(λ) is
realized on the set A(Γ) by combinatorial crystal operators
f̃1, . . . , f̃r :

f̃i (J) :=

{
J ∪ {l}
J \ {k} ∪ {l} .

Remarks. (1) The model is independent of the λ-chain Γ, so we
will use the notation A(λ) = A(Γ). This will be the case with
other variations of the alcove model.

(2) We generalized the mentioned results to symmetrizable
Kac-Moody algebras.



The crystal structure

Theorem. [L.-Postnikov] The structure of the crystal B(λ) is
realized on the set A(Γ) by combinatorial crystal operators
f̃1, . . . , f̃r :

f̃i (J) :=

{
J ∪ {l}
J \ {k} ∪ {l} .

Remarks. (1) The model is independent of the λ-chain Γ, so we
will use the notation A(λ) = A(Γ). This will be the case with
other variations of the alcove model.

(2) We generalized the mentioned results to symmetrizable
Kac-Moody algebras.



The realization of Kirillov-Reshetikhin (affine) crystals:
the quantum Bruhat graph

Consider (W ,≤), with covers w ⋖ wsα thought of as labeled
directed edges w

α−→ wsα.

Definition. The quantum Bruhat graph on W , denoted QBG(W ),
is defined by adding downward edges

w
α−→ wsα , where ℓ(wsα) = ℓ(w)− 2ht(α∨) + 1 .

(If α∨ =
∑

i ciα
∨
i , then ht(α∨) :=

∑
i ci .)
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The realization of KR crystals (cont.)

Definition. Given λ ∈ P+ and a λ-chain Γ = (β1, . . . , βm),
consider the set Aq(λ) = Aq(Γ) of

J = {j1 < j2 < . . . < js} ⊆ {1, . . . ,m} ,

given by the following weaker admissibility condition:

Id
βj1−→ rj1

βj2−→ . . .
βjs−→ rj1 . . . rjs ;

recall the notation ri := sβi
.

Theorem. [L.-Naito-Sagaki-Schilling-Shimozono] Given
(p1, . . . , pm) and an arbitrary Lie type, let

λ = ωp1 + . . .+ ωpm .

The crystal structure of the tensor product of KR crystals
Bp1,1 ⊗ . . .⊗ Bpm,1 is realized on the set Aq(λ) by combinatorial

crystal operators f̃1, . . . , f̃r and f̃0.
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Macdonald polynomials

λ: dominant weight for a finite root system.

Pλ(X ; q, t): Weyl group invariant polynomials, orthogonal,
generalizing the corresponding irreducible characters

ch(V (λ)) = Pλ(X ; 0, 0) .

Deep connections with:

▶ affine Lie algebras

▶ double affine Hecke algebras

▶ Hilbert schemes

▶ quantum integrable systems

▶ conformal field theory

▶ etc.
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Applications of the alcove model for KR crystals

Theorem. [L.-Naito-Sagaki-Schilling-Shimozono] The following
were proved uniformly in arbitrary Lie type.

▶ The graded character of a tensor product of KR crystals
(grading by the energy function) coincides with a specialized
Macdonald polynomial Pλ(X ; q, t = 0).

▶ Combinatorial formula for the energy function.

▶ Algorithm for computing the combinatorial R-matrix (unique
crystal isomorphism commuting factors in a tensor product of
KR crystals).
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Hall-Littlewood polynomials Pλ(X ; t)

Pλ(X ; t) is a specialized Macdonald polynomial Pλ(X ; q = 0, t).

Pλ(X ; t) is usually defined by a t-analogue of the Weyl character
formula (for the irreducible characters).
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Hall-Littlewood polynomials Pλ(X ; t) (cont.)

The Hall-Littlewood polynomials are related to:

▶ Enumerative properties of finite abelian groups, Hall algebra.

▶ Enumeration of rational points over a finite field of the
unipotent partial flag variety.

▶ The character theory of general linear groups over finite fields.

▶ The theory of p-adic groups (spherical functions) and Hecke
algebras.

▶ Lusztig’s t-analogues of weight multiplicities (Kostka-Foulkes
polynomials).

▶ etc.
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Applications of the alcove model to Pλ(X ; t)

Given λ ∈ P+, consider a λ-chain Γ := (β1, . . . , βm).

Definition. Let A<(λ) be the set of admissible pairs (w , J), i.e.,
pairs satisfying

w ∈ W , J = {j1 < j2 < . . . < js} ⊆ {1, . . . ,m} and

w < wrj1 < . . . < wrj1 . . . rjs ∈ W λ not necessarily covers .

Theorem. [Schwer, Ram] (1) We have

Pλ(X ; t) =
∑

(w ,J)∈A<(λ)

t
1
2
(ℓ(w)+ℓ(wϕ(J))−|J|) (1− t)|J| xw(µ(J)) .

(2) There is also a similar Littlewood-Richardson rule for
expanding the product of two Hall-Littlewood polynomials.
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Question related to F1

Facts. (1) [Gaussent-Littelmann] The alcove model is closely
related to galleries in affine buildings (via the affine Grassmannian).

(2) [Lorscheid, Thas] There is a theory of buildings over F1 and an
action of the corresponding Chevalley groups over F1 on them.

Question. Alcove model over F1 and its applications to
representations of Chevalley groups over F1?
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Geometric setup

Complex semisimple Lie group G .

Borel subgroup B ⊂ G , maximal torus T ⊂ B, opposite Borel B−,
parabolic subgroup P.

Generalized flag manifold G/B, partial flag manifold G/P.

Schubert varieties Xw = BwB−/B−, for w ∈ W .

Structure sheaves of Schubert varieties: Ow = OXw .

Line bundle: for λ ∈ P, let Lλ = G ×B C−λ, with C−λ = C.

Example. Type An−1.

G = SLn(C), B = { upper triangular matrices in SLn }, W = Sn.

Classical flag manifold

SLn/B = Fln = {(0 ⊂ V1 ⊂ . . . ⊂ Vn−1 ⊂ Cn)} .

Partial flag manifold: Grassmannian of k-subspaces in Cn.
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Geometric setup (cont.)

Z[X ] := ⟨xλ : λ ∈ P⟩ ; Z[P] := ⟨eλ : λ ∈ P⟩ .

Grothendieck ring of coherent T -equivariant sheaves KT (G/B).

Fact.

KT (G/B) ≃ (Z[X ]⊗ Z[P])/I via [Lλ] 7→ eλ .

Fact. [Kostant-Kumar] The Schubert classes {[Ow ] : w ∈ W }
form a basis of KT (G/B) over Z[X ] = KT (pt).

Chevalley-type formula for restricting Lλ to a Schubert variety Xw :

[Lλ] · [Ow ] =
∑
v∈W

cvw (λ) [Ov ] , cvw (λ) ∈ Z[X ] .
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A combinatorial Chevalley formula

Given any λ ∈ P, we consider an alcove path to A◦ − λ, and the
corresponding λ-chain (of roots) Γ = (β1, . . . , βm). Recall the
notation ri := sβi

.

Definition. Given w ∈ W , consider the set A(w , λ) = A(w , Γ) of
J = {j1 < j2 < . . . < js} ⊆ {1, . . . ,m} given by the following
admissibility condition:

w ⋖ wrj1 ⋖ wrj1rj2 ⋖ . . .⋖ wrj1 . . . rjs =: π(w , J) .

Let n(J) be the number of negative roots in {βj1 , . . . , βjs}.

Theorem. [L.-Postnikov] Given the above setup, we have in
KT (G/B) and KT (G/P)

[Lλ] · [Ow ] =
∑

J∈A(w ,λ)

(−1)n(J)xw(µ(J)) [Oπ(w ,J)] .
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Further work

Theorem. [L.-Naito-Sagaki] Chevalley rules for the

▶ T -equivariant K -theory of the semi-infinite flag manifold
(non-standard affine version of the classical flag manifold
G/B);

▶ T -equivariant quantum K -theory of the classical flag
manifolds G/B and G/P.

Remark. Both rules involve the alcove model based on the
quantum Bruhat graph.
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