Moduli of Representations of Clannish Algebras

Cody Gilbert

Saint Louis University

September 2023

- Throughout, $k = \overline{k}$ and char k = 0.
- All quivers will be finite and connected.
- All algebras will be assumed to be associative and finite dimensional over *k*.

- Moduli of representations of finite dimensional algebras were introduced by Alastair King in [King '94].
- Moduli of representations can be arbitrarily complicated [Hille '96, Huisgen-Zimmerman '98]

Conjecture (Carroll-Chindris '15)

Let (Q, I) be a bound quiver, and A = kQ/I its bound quiver algebra. If A is tame, then for any irreducible component $Z \subset rep_Q(I, \mathbf{d})$ and any weight θ such that $Z_{\theta}^{ss} \neq \emptyset$, $\mathcal{M}(Z)_{\theta}^{ss}$ is a product of projective spaces.

Context and Main Theorem

- The decomposition holds for the following classes of algebras:
 - Algebras of global dimension one [Domokos-Lenzing '02],
 - Tilted Algebras [Chindris '13],
 - Quasi-tilted algebras [Bobinski '14],
 - Acyclic gentle algebras [Carroll-Chindris '15],
 - Special biserial algebras [Carroll-Chindris-Kinser-Weyman '20].

Theorem (Gilbert '23)

Let $\Lambda = kQ/I$ be a clannish algebra. Then any irreducible component of a moduli space $\mathcal{M}(\Lambda, \mathbf{d})^{ss}_{\theta}$ is isomorphic to a product of projective spaces.

4/13

Representation Varieties and Stability

• Throughout,
$$A = kQ/I$$
.

• For a fixed dimension vector $\mathbf{d} \in \mathbb{N}^{Q_0}$,

$$\operatorname{rep}_Q(I,\operatorname{\mathbf{d}}) := \{ M \in \prod_{a \in Q_1} \operatorname{Mat}_{\operatorname{\mathbf{d}}(ha) \times \operatorname{\mathbf{d}}(ta)}(k) \, | \, M(r) = 0, \text{ for all } r \in I \}$$

admits a $GL(\mathbf{d}) = \prod_{i \in Q_0} GL(\mathbf{d}_i)$ action via conjugation.

Definition

For $Z \subseteq \operatorname{rep}_Q(I, \mathbf{d})$ an irreducible, closed, $\operatorname{GL}(\mathbf{d})$ -invariant subvariety and $\theta \in \mathbb{Z}^{Q_0}$,

 $Z^{ss}_{\theta} = \{ M \in Z \, | \, \theta(\dim M) = 0 \text{ and } \theta(\dim M') \le 0 \text{ for } M' \le M \}$

 $Z^s_\theta = \{ M \in Z \mid \theta(\dim M) = 0 \text{ and } \theta(\dim M') < 0 \text{ for } 0 < M' < M \}$

are the $\theta\text{-semistable}$ locus and $\theta\text{-stable}$ locus, respectively.

Definition

For an irreducible, θ -semistable variety $Z \subseteq \operatorname{rep}_Q(I, \mathbf{d})$ we let

$$\mathcal{M}(Z)^{ss}_{ heta} := \operatorname{Proj}(igoplus_{n\geq 0} \operatorname{SI}(Z)_{n heta})$$

denote the corresponding moduli space of Z, whose points are in bijection with the closed $GL(\mathbf{d})$ -orbits in Z_{θ}^{ss} .

From [CC15b], for A tame and Z ⊂ rep_Q(I, d) a θ-stable irreducible component, if Z is normal, then M(Z)^{ss}_θ is either a point or P¹.

Theorem (Chindris-Kinser '18)

For $Z \subset rep_Q(I, \mathbf{d})^{ss}_{\theta}$ an irreducible component, $Z = \frac{m_1 Z_1 + \ldots + m_r Z_r}{Z_1^{\oplus m_1} \oplus \ldots \oplus Z_r^{\oplus m_r}}$ θ -stable decomposition and $\widetilde{Z} = \overline{Z_1^{\oplus m_1} \oplus \ldots \oplus Z_r^{\oplus m_r}}$ we have

• $\mathcal{M}(\widetilde{Z})^{ss}_{\theta} = \mathcal{M}(Z)^{ss}_{\theta}$ whenever $\mathcal{M}(Z)^{ss}_{\theta}$ is irreducible.

2 If Z_1 is an orbit closure, then

$$\mathcal{M}(\overline{Z_1^{\oplus m_1} \oplus \ldots \oplus Z_l^{\oplus m_l}})_{\theta}^{ss} \cong \mathcal{M}(\overline{Z_2^{\oplus m_2} \oplus \ldots \oplus Z_l^{\oplus m_l}})_{\theta}^{ss}$$

 $\Psi: S^{m_1}(\mathcal{M}(Z_1)_{\theta}^{ss}) \times \ldots \times S^{m_l}(\mathcal{M}(Z_l)_{\theta}^{ss}) \to \mathcal{M}(\widetilde{Z})_{\theta}^{ss}$

which is an isomorphism when $\mathcal{M}(\widetilde{Z})^{ss}_{\theta}$ is normal.

Lemma

Let A = kQ/I and B = kQ/I' be finite dimensional tame algebras with $I' \subset I$. Let $Z_i \subset rep_Q(I, \mathbf{d}_i)$, $1 \le i \le m$, be irreducible components satisfying:

- each Z_i is Schur;
- none of the Z_i are orbit closures;

• $Hom_A(M_i, M_j) = 0$ for $i \neq j$ and general $M_i \in Z_i, M_j \in Z_j$. With $\mathbf{d} = \sum_{i=1}^m \mathbf{d}_i$, then $Z = \overline{Z_1 \oplus \ldots \oplus Z_m}$ is an irreducible component of $rep_Q(l', \mathbf{d})$ with respect to the closed embedding $rep_Q(l, \mathbf{d}) \subset rep_Q(l', \mathbf{d})$.

Skewed-Gentle Algebras and Clannish Algebras

- Skewed-gentle algebras are gentle algebras with the additional possibility of there being idempotent loops on the vertices.
- In a similar way, clannish algebras are obtained from special biserial algebras by the ability to add these loops.
- Clannish algebras generalize special biserial algebras in that all but finitely many indecomposable representations of a clannish algebra are determined be walks of the following forms:

Proof of Main Theorem

• Let $\Lambda = kQ/I$ be a clannish algebra.

Lemma

There exists an ideal $J \subseteq I \subset kQ$ such that $\Lambda' := kQ/J$ is a skewed-gentle algebra. As such, we have an induced embedding $rep_Q(I, \mathbf{d}) \subset rep_Q(J, \mathbf{d})$.

Proposition

Let $\Lambda' = kQ/J$ be a skewed-gentle algebra and **d** be a dimension vector. If $Z \subset rep_Q(J, \mathbf{d})$ is an irreducible component, then Z is normal.

Proof of Main Theorem

- From earlier lemma, if $Z = \overline{Z_1 \oplus \ldots \oplus Z_m} \subset \operatorname{rep}_Q(I, \mathbf{d})$ is an irreducible component where
 - each Z_i is Schur;
 - none of the Z_i are orbit closures;

• Hom_A(M_i, M_j) = 0 for $i \neq j$ and general $M_i \in Z_i, M_j \in Z_j$, we may view Z as an irreducible component of rep_Q(J, d).

• Such Z are thus normal. An argument using the moduli decomposition theorem gives the following:

Theorem

Let Λ be clannish. Then any irreducible component of a moduli space $\mathcal{M}(\Lambda, \mathbf{d})^{ss}_{\theta}$ is isomorphic to a product of projective spaces.

A Future Direction

• With kQ/I tame acyclic and

$$\mathcal{P}_{A}(\mathbf{d}) := \{ M \in \operatorname{rep}_{Q}(I, \mathbf{d}) \, | \, \operatorname{pdim}_{A} M \leq 1 \}$$

one has that $C_A(\mathbf{d}) = \overline{\mathcal{P}_A(\mathbf{d})}$ is an irreducible component. The following problem was posed by Calin Chindris

Problem

Let A be acyclic and tame. If $\mathbf{d} \in \mathbb{N}^{Q_0}$ is such that $\mathcal{P}_A(\mathbf{d}) \neq \emptyset$, describe $\mathcal{M}(C_A(\mathbf{d}))^{ss}_{\langle \mathbf{d}, - \rangle}$.

Thank you!